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ABSTRACT

The use of isoparametric finite–elements, as a viable replacement for existing practices in the geometrical
modelling of scattering surfaces, is presented. The boundary integral approach, together with the variational

procedure, allows scattering parameters to be computed accurately.

Introduction

The isoparametric finite-element technique allows
higher–order modelling with non-planar elements and
results in reduced geometrical modelling error (Fig.
1) . Previous alternatives have involved wire grids
or patch representations [1,2] such that the scatter-
ing object and surface currents are unnecessarily
poorly represented. This technique is applicable to

the solution of vector integral equations pertaining
to scattering problems [3].

Figure 1: A boundary integral surface modelled by

elements of second degree. Node points

are indicated.

With the variational approach, theoretical con-
vergence is guaranteed and it has been shown [4] that

significantly fewer dependent variables are required
to attain the same degree of accuracy as the point-
matching method. Although the cost of generating the

variationally–derived equations may be quite large,

economies may be achieved through algorithmic improve-
ments.

The fundamental problem in scattering computation

is the explicit determination of the far-field para-

meters which depend on the configuration and material

of the scatterer; the frequency, polarization and

angle of incidence of the incidence field; and the far
field observation angle. The sequence of computation
follows from determination of the surface current den-

sities at each node point on the surface of the scat–
tering body. The scattered far field radiated by the

currents are then ascertained and related to the radar
cross section (RCS).

Theoretical Overview

Consider the case of a perfectly conducting
obstacle subjected to an incident plane electromagne-
tic wave. Satisfying the boundary conditions imposed
on the surface of the scatterer,
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which describes an exterior problem since no fields
exist within the body. The free-space Green’s func–

tion allows the formulation of the magnetic field
integral equation (MFIE)

3(s) = 22 x Einc(s) + * 6 x
I

j X V’@ds”

s
(2)

which >s a Fredholm integral of the second kind.
Here, J(s) is the surface current density, Hint(s)

is the incident magnetic field and 8 ia a unit normal

on the surface and in an outward direction. Primed

and unprimed coordinates refer to source and observa–
tion parameters respectively The Rayleigh–Ritz dis-

cretization procedure allow J(s) to have finite-
valued components at chosen points

(3)

where a and ~ are column matrices and the CIi are the— —

polynomic interpolator functions with

1 at node i

a
i= {

(4)

O at all other nodes

In effect, ~(s) is expressed as a linear combination

of interpolator polynomials. Substituting (3) into

(2) and rearranging gives

aT(s)J – A 8 x
2’n J

~T(S’)~ x V’$ds’ = 21+ x Hint(s) (5)— —
s

Premultiplying by ~(s) and integrating over ds,

f
a(s)aT(s)ds~ - + ii x

~J
g(s) ~T(S’)~ x V’$ds’ds

s––– s s

—
-/

2Q(s)6 x iiinc(s)ds (6)

s

Performing the cross-products and expanding into com-
ponent forms, (6) may be written in matrix form as

(7)

By using the Jacobian of transformation, a mapping

from the local to the global coordinates is achieved

such that the entries of the S and ~ matrices may

be evaluated.

The scattered field is evaluated using the expression

–jkr

Es(r) = *
I

(jk~ x ?)e
jk?.?”ds.

(8)
s



In particular, the x-component is given by

-jkr

\

‘+ YY ‘ + Zz’

H:=* (Z(J z - Jzy))e
j kxx

r ds’ (9)
Sry

From (8) and (9), the RCS of a scatterer in a given

orientation may be calculated from

(lo)

The scattered field ~ and RCS are functions of angu-
lar coordinate.

Singularity of the Kernel

Double-surface integrations over the same element

produces a singularity as the inner integral is sing-

ular at the Gaussian points of the outer integral.

To cater for this, the singularity is extracted and

integrated analytically. The singularity at = = ~-

is removed by expressing the inner integral as

—-JK(~l~’)(cij(~’) – cij(~))ds;.
s

+ aj(F) JK(Pli’)ds_>

s
r

The first integral on the right is evaluated

icallv while the second has to be integrated

(11)

numer–

analyt-

ically.
.

Usually an expression for the latter does not

exist for integration in closed form over curved sur-
faces. One alternative is to perform the integration

over planar subregions. The approximation appears

justifiable and the error introduced diminishes with
the degree of approximation.

Conclusion

As a consequence of a number of numerical results,

it appears that significant economies and/or improved

accuracy are to be realized by application of the

isoparametric boundary element method to the solution

of electromagnetic scattering problems.
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